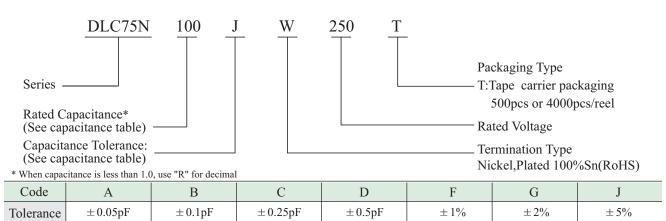


DLC75N Low ESR Microwave Capacitors

DLC75N(.024" x.012")


DLC75N(0201)

♦ DLC75N Capacitance & Rated Voltage Table

Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC	Cap.pF	Code	Tol.	Rated WVDC		
0.1	0R1		25V Code	2.2	2R2			16	160		25V Code		
0.2	0R2			2.4	2R4			18	180				
0.3	0R3			2.7	2R7			20	200				
0.4	0R4			3.0	3R0	A,B, C,D		22	220				
0.5	0R5			3.3	3R3			24	240				
0.6	0R6			3.6	3R6			27	270				
0.7	0R7			3.9	3R9			30	300				
0.8	0R8	A,B, C,D		4.3	4R3			Code	33	330		250	
0.9	0R9			4.7	4R7		250 or 50V	36	360	F,G, J	or 50V Code 500		
1.0	1R0		250	5.1	5R1			39	390				
1.1	1R1		or 50V Code 500	5.6	5R6			43	430				
1.2	1R2			6.2	6R2		Code 500			47	470		300
1.3	1R3			6.8	6R8			500	51	510			
1.4	1R4			7.5	7R5			56	560				
1.5	1R5			8.2	8R2			62	620				
1.6	1R6			9.1	9R1			68	680				
1.7	1R7			10	100	F,G,		75	750				
1.8	1R8			11	110			82	820				
1.9	1R9			12	120				91	910			
2.0	2R0			13	130				100	101			
2.1	2R1			15	150								

Remark: special capacitance, tolerance and WVDC are available, consult with DALICAP.

◆ Part Numbering

www.etsc.ru office@etsc.ru +7(495) 228-88-98

DLC75N Low ESR Microwave Capacitors

DLC75N(.024" x.012")

♦ DLC75N Chip Dimensions

unit:inch(millimeter)

Series	Term. Code	Type / Outlines		Dlatad			
			Length (Lc)	Width (Wc)	Thickness (Tc)	Overlap (B)	Plated Material
DLC75N	W	Tel	$.024 \pm .001$ (0.60 ± 0.03)	$.012 \pm .001$ (0.30 ± 0.03)	$.012 \pm .001$ (0.30 ± 0.03)	.008 (0.20) max	Sn/Ni (RoHS)

◆ Design Kits

These capacitors are 100% RoHS. Kits contain 10(ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

Kit	Description (pF)	Values (pF)	Tolerance
DKDLC75N01	0.1 - 2.0	0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.9, 2.0	±0.10pF
DKDLC75N02	1.0 - 10	1.0, 1.3, 1.5, 1.7, 1.9, 2.0, 2.2, 2.7, 3.0, 3.9, 4.7, 5.6, 6.8, 7.5, 8.2	± 0.10pF
DKDEC / 51102		10	± 5%
DKDLC75N03	10 - 33	10, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33	± 5%

♦ Performance

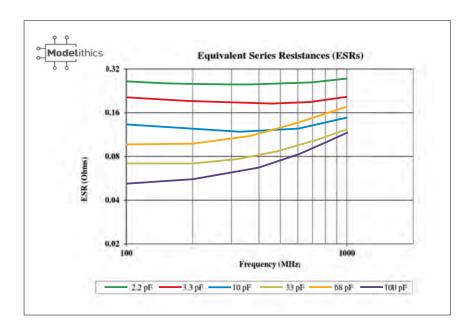
Item	Specifications		
Quality Factor (Q)	2,000 min.		
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25 °C at rated WVDC.		
institution resistance (ir.)	10⁴ Megohms min. @ +125℃ at rated WVDC.		
Rated Voltage	25V		
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.		
Operating Temperature Range	-55°C to +175°C		
Temperature Coefficient (TC)	0 ± 30ppm/℃		
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.		
Piezoelectric Effects	None		

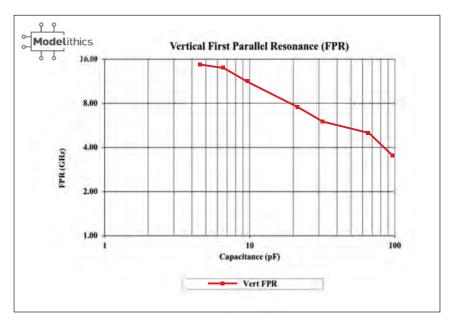
www.etsc.ru office@etsc.ru +7(495) 228-88-98

DLC75N Low ESR Microwave Capacitors

DLC75N(.024" x.012")

◆Environmental Tests


Item	Specifications	Method			
Terminal	Termination should not pull off.	Linear pull force exerted on axial leads soldered to			
Adhesion	Ceramic should remain undamaged.	each terminal. 2.0lbs.			
	No mechanical damage				
Resistance	Capacitance change: $-1.0\% \sim +2.0\%$	Preheat device to 150°C-180°C for 60 sec.			
to soldering heat	Q>500	Dip in 260°±5°C solder for 10±1 sec.			
	I.R. >10 G Ohms	Measure after 24±2 hours cooling period.			
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage	MIL-STD-202, Method 107, Condition A.			
	Capacitance change:±0.5% or 0.5pF max	At the maximum rated temperature (-55°C and 125°C)			
Thermal	Q>2000	stay 30 minutes.			
Shock	I.R. >10 G Ohms	The time of removing shall not be more than 3 minutes.			
	Breakdown voltage: 2.5 x WVDC	Perform the five cycles.			
	No mechanical damage				
	Capacitance change: ±0.5% or 0.5pF max.	MIL-STD-202, Method 106.			
Humidity, Steady State	Q>300				
Steady State	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage				
T 77.1	Capacitance change: $\pm 0.3\%$ or 0.3 pF max.	MIL-STD-202, Method 103, Condition A, with 1.5 Volt D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.			
Low Voltage Humidity	Q>300				
	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				
	No mechanical damage				
	Capacitance change: ±2.0% or 0.5pF max.	MIL-STD-202, Method 108, for 1000 hours, at 125°C. 200% Rated voltage D.C. applied.			
Life	Q>500				
	I.R. >1 G Ohms				
	Breakdown voltage: 2.5 x WVDC				

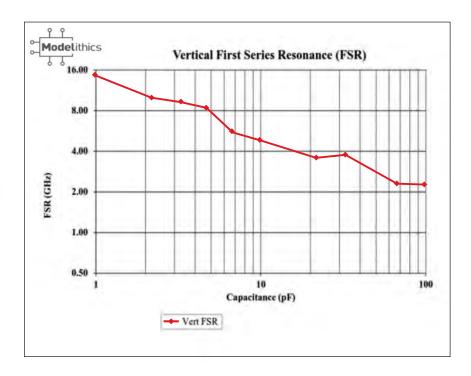


DLC75N Low ESR Microwave Capacitors

DLC75N(.024" x.012")

◆ DLC75N Performance Curve

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the electrode planes are parallel to the substrate.


www.etsc.ru office@etsc.ru +7(495) 228-88-98

DLC75N Low ESR Microwave Capacitors

DLC75N(.024" x.012")

◆ DLC75N Performance Curve

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, $\operatorname{Im}[\operatorname{Zin}]$, equals zero. Should $\operatorname{Im}[\operatorname{Zin}]$ or the real part of the input impedance, $\operatorname{Re}[\operatorname{Zin}]$, not be monotonic with frequency at frequencies lower than those at which $\operatorname{Im}[\operatorname{Zin}] = 0$, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement Conditions:

The definitions on the FPR and FSR charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO3006; substrate dielectric constant = 6.15; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 10; microstrip trace width (mils) = 14.1; Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by DALICAP. The models are derived from measurements on a large number of parts disposed on several different substrates.