DLC75H Low ESR Microwave Capacitors DLC75H(.040" x.020") ## DLC75H (.040" x .020") #### **♦ DLC75H Capacitance & Rated Voltage Table** | Cap.pF | Code | Tol. | Rated
WVDC | Cap.pF | Code | Tol. | Rated
WVDC | Cap.pF | Code | Tol. | Rated
WVDC | |--------|------|------|----------------------------------|--------|--------|------|-------------------|--------|------|------|---------------| | 0.1 | 0R1 | | | 2.0 | 2R0 | | 50V | 10 | 100 | | | | 0.2 | 0R2 | | | 2.1 | 2R1 | | Code
500 | 11 | 110 | | | | 0.3 | 0R3 | | | 2.2 | 2R2 | | or
200V | 12 | 120 | | 50V | | 0.4 | 0R4 | | | 2.4 | 2R4 | | Code | 13 | 130 | | Code | | 0.5 | 0R5 | | 5017 | 2.7 | 2R7 | | 201
or
250V | 15 | 150 | F,G, | 500 | | 0.6 | 0R6 | | 50V
Code | 3.0 | 3R0 | A,B, | 250V
Code | 16 | 160 | J | or
200V | | 0.7 | 0R7 | | 500
or
200V
Code
201 | 3.3 | 3R3 | C,D | Code
251 | 18 | 180 | Со | Code | | 0.8 | 0R8 | | | 3.6 | 3R6 | | 50V | 20 | 200 | | 201 | | 0.9 | 0R9 | A,B, | | 3.9 | 3R9 | | | 22 | 220 | | | | 1.0 | 1R0 | C,D | | 4.3 | .3 4R3 | | | 24 | 240 | | | | 1.1 | 1R1 | | | 4.7 | 4R7 | | | 27 | 270 | | | | 1.2 | 1R2 | | or
250V | 5.1 | 5R1 | | Code
500 | 30 | 300 | | 50V | | 1.3 | 1R3 | | Code | 5.6 | 5R6 | | or | 33 | 330 | | Code
500 | | 1.4 | 1R4 | | 251 | 6.2 | 6R2 | | 200V | | | | | | 1.5 | 1R5 | | | 6.8 | 6R8 | | Code | | | | | | 1.6 | 1R6 | | | 7.5 | 7R5 | А,В, | 201 | | | | | | 1.7 | 1R7 | | | 8.2 | 8R2 | С | | | | | | | 1.8 | 1R8 | | | 9.1 | 9R1 | | | | | | | | 1.9 | 1R9 | | | | | | | | | | | Remark: special capacitance, tolerance and WVDC are available, consult with DALICAP. #### **♦** Part Numbering $\ensuremath{^*}$ When capacitance is less than 1.0, use "R" for decimal | Code | A | В | C | D | F | G | J | |-----------|--------------|--------------|---------------|--------------|-----|------|-----| | Tolerance | $\pm0.05 pF$ | $\pm 0.1 pF$ | $\pm 0.25 pF$ | $\pm 0.5 pF$ | ±1% | ± 2% | ±5% | ## www.etsc.ru office@etsc.ru +7(495) 228-88-98 ### **DLC75H Low ESR Microwave Capacitors** DLC75H(.040" x.020") ## **♦ DLC75H Chip Dimensions** unit:inch(millimeter) | | Term.
Code | | | Dlatad | | | | |--------|---------------|-----------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------| | Series | | Type / Outlines | Length (Lc) | Width (Wc) | Thickness (Tc) | Overlap
(B) | Plated
Material | | DLC70H | W | Tel | $.040 \pm .004$ (1.02 ± 0.10) | $.020 \pm .004$ (0.51 ± 0.10) | $.020 \pm .004$ (0.51 ± 0.10) | $.010 \pm .006$ (0.25 ± 0.15) | Sn/Ni
(RoHS) | ### ◆ Design Kits These capacitors are 100% RoHS. Kits contain 10(ten) pieces per value; number of values per kit varies, depending on case size and capacitance. | Kit | Description (pF) | Values (pF) | Tolerance | |---------------|------------------|---|-----------| | DKDLC75H01 | 0.1 - 2.0 | 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0 | ±0.10pF | | DKDLC75H02 | 1.0 - 10 | 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2 | ±0.10pF | | DKDEC / 31102 | | 10 | ±5% | | DKDLC75H03 | 10 - 33 | 10, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33 | ±5% | #### **♦** Performance | Item | Specifications | | | |---------------------------------------|--|--|--| | Quality Factor (Q) | 2,000 min. | | | | Insulation Resistance (IR) | 10 ⁵ Megohms min. @ +25℃ at rated WVDC. | | | | | 10⁴ Megohms min. @ +125 °C at rated WVDC. | | | | Rated Voltage | See capacitance table | | | | Dielectric Withstanding Voltage (DWV) | 250% of rated voltage for 5 seconds. | | | | Operating Temperature Range | -55°C to +175°C | | | | Temperature Coefficient (TC) | $0 \pm 30 \text{ppm/}^{\circ}\text{C}$ | | | | Capacitance Drift | $\pm 0.02\%$ or ± 0.02 pF, whichever is greater. | | | | Piezoelectric Effects | None | | | # www.etsc.ru office@etsc.ru +7(495) 228-88-98 ## **DLC75H Low ESR Microwave Capacitors** DLC75H(.040" x.020") ## **♦** Environmental Tests | Item | Specifications | Method | | | | |---------------------------|--|--|--|--|--| | Terminal | Termination should not pull off. | Linear pull force exerted on axial leads soldered to | | | | | Adhesion | Ceramic should remain undamaged. | each terminal. 2.0lbs. | | | | | | No mechanical damage | | | | | | Resistance | Capacitance change: $-1.0\% \sim +2.0\%$ | Preheat device to 150°C-180°C for 60 sec. | | | | | to soldering heat | Q>500 | Dip in 260°±5°C solder for 10±1 sec. | | | | | | I.R. >10 G Ohms | Measure after 24±2 hours cooling period. | | | | | | Breakdown voltage: 2.5 x WVDC | | | | | | | No mechanical damage | MIL-STD-202, Method 107, Condition A. | | | | | | Capacitance change:±0.5% or 0.5pF max | At the maximum rated temperature (-55°C and 125°C) | | | | | Thermal | Q>2000 | stay 30 minutes. | | | | | Shock | I.R. >10 G Ohms | The time of removing shall not be more than 3 minutes | | | | | | Breakdown voltage: 2.5 x WVDC | Perform the five cycles. | | | | | | No mechanical damage | | | | | | | Capacitance change: $\pm 0.5\%$ or 0.5 pF max. | | | | | | Humidity,
Steady State | Q>300 | MIL-STD-202, Method 106. | | | | | Steady State | I.R. >1 G Ohms | | | | | | | Breakdown voltage: 2.5 x WVDC | | | | | | | No mechanical damage | | | | | | L avy Valtaga | Capacitance change: $\pm 0.3\%$ or $0.3pF$ max. | MIL-STD-202, Method 103, Condition A, with 1.5 Volts | | | | | Low Voltage
Humidity | Q>300 | D.C. applied while subjected to an environment of 85°C | | | | | · | I.R. >1 G Ohms | with 85% relative humidity for 240 hours minimum. | | | | | | Breakdown voltage: 2.5 x WVDC | | | | | | | No mechanical damage | | | | | | | Capacitance change: ±2.0% or 0.5pF max. | MIL-STD-202, Method 108, for 1000 hours, at 125°C 200% Rated voltage D.C. applied. | | | | | Life | Q>500 | | | | | | | I.R. >1 G Ohms | rr | | | | | | Breakdown voltage: 2.5 x WVDC | | | | | **DLC75H Low ESR Microwave Capacitors** DLC75H(.040" x.020") #### **◆ DLC75H Performance Curve** The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the electrode planes are parallel to the substrate. **DLC75H Low ESR Microwave Capacitors** DLC75H(.040" x.020") #### **◆ DLC75H Performance Curve** The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, $\operatorname{Im}[\operatorname{Zin}]$, equals zero. Should $\operatorname{Im}[\operatorname{Zin}]$ or the real part of the input impedance, $\operatorname{Re}[\operatorname{Zin}]$, not be monotonic with frequency at frequencies lower than those at which $\operatorname{Im}[\operatorname{Zin}] = 0$, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions. #### **Definitions and Measurement conditions:** The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.48; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 15; microstrip trace width (mils) = 22; Reference planes at sample edges. All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by DLC. The models are derived from measurements on a large number of parts disposed on several different substrates.