PRODUCT CONTENTS

DLC70 Series

RF/Microwave Multilayer Chip Ceramic Capacitors 01-07

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

SIZE: 0402, 0603, 0505, 0805, 1111, 2225, 3838

DLC70 Series

08-12 **High RF Power Multilayer Chip Ceramic Capacitors**

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

SIZE: 6040, 7575, 130130

Capacitor Assemblies Offering

13-14

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance, Custom-made.

DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors 15-20

Product Features

Ultra-Low ESR, High Working Voltage, High RF Power, High Self-Resonance Frequency. **SIZE**: 0201, 0402, 0603, 0805, 0708, 1111

Broadband Ceramic Capacitors

21-22

Product Features

Small Size, Lower RF Impedance in Broadband, Low Insertion Losses, Low Reflection.

SIZE: 01005, 0201, 0402, 0805

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

Product Features

Non-Magnetic, Suitable for MRI and other equipment requiring non-magnetic.

SIZE: 0603, 0805, 1206, 1210

Non-Magnetic Chip Resistors

30-34

Product Applications

MRI medical equipment, Measurement instrument, other non-magnetic applications.

SIZE: 0603, 0805, 1206

Product Applications

Single Layer Chip Ceramic Capacitor

35-47

Suitable for RF/Microwave phased array radar T/R assembly, and filter, DC blocking and bypass

at microwave frequencies. **Thin Film Circuit**

48-50

Product Applications

Substrates for microwave/millimeter wave application, microwave/millimeter wave device, and high-speed optical communication device.

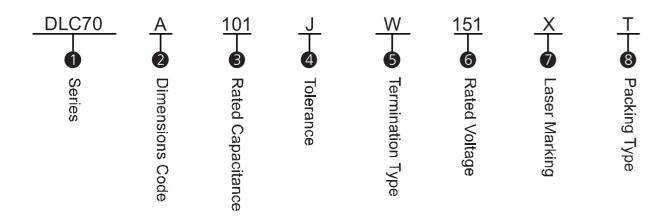
DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

◆Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance. Lead capacitors' surface are coated with special coating, which can prevent arc and corona from occurring at high RF voltages.


◆ Product Applications

Typical Circuit Applications: High Frequency/Microwave/ RF Amplifiers, Low Noise Amplifiers, L/C Filters.

Typical Applications Field: Mobile Base Stations, Repeaters, Wireless Broadcasting Equipments,

Radio Stations, Radar, MRI Equipments, HSR Signal Transponders.

♦ Part Numbering

① **Series**: Dalicap 70 Series High Q High Power Capacitor, Temperature Coefficient: 0 ± 30 ppm/°C.

2 Dimensions Code

unit:inch(millimeter)

	DLC70H	DLC70P	DLC70A	DLC70D
Length	$.039 \pm .005$ (1.00 ± 0.12)	$.063 \pm .006$ (1.60 ± 0.15)	.055(+.015~010) (1.40+0.38~-0.25)	$.079 \pm .008$ (2.00 ± 0.20)
Width	$.020 \pm .004 (0.50 \pm 0.10)$	$.031 \pm .006 (0.80 \pm 0.15)$	$.055 \pm .010 (1.40 \pm 0.25)$	$.049 \pm .008 (1.25 \pm 0.20)$
Thickness	$.020 \pm .004 (0.50 \pm 0.10)$	$.031 \pm .006$ (0.80 ± 0.15)	.057(1.45)max	.057(1.45)max
	DLC70B	DLC70C	DLC70E	Ī
Length	.110(+.025~—.010) (2.79+0.63~—0.25)	.225(+.020~—.010) (5.72+0.51~—0.25)	.380(+.015~—.010) (9.65+0.38~—0.25)	_
Width	.110 ±.010(2.79 ±0.25)	.250 ±.015(6.35 ±0.38)	.380 ± .010(9.65 ± 0.25)	_
Thickness	.100(2.54)max	.150(3.81)max	.170(4.32)max	_

3 Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

4 Tolerance

Code	А	В	С	D	F	G	J
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%

⑤ Termination Type

Code	W	P	L		
Туре	100% Sn Solder over	100% Sn Solder over Copper	90% Sn 10% Pb Solder over		
	Nickel Plating	Plating (RoHS Compliant)	Nickel Plating (Tin/Lead)		

Code	MS	AR	RR	AW	RW
Туре	Microstrip	Axial Ribbon	Radial Ribbon	Axial Wire	Radial Wire
Code	MN	AN	FN	BN	RN
Туре	Non-mag Microstrip	Non-mag Axial Ribbon	Non-mag Radial Ribbon	Non-mag Axial Wire	Non-mag Radial Wire

Rated Voltage

Code	Rated Voltage(V)	Code	Rated Voltage(V)	Code	Rated Voltage(V)
500	50	301	300	252	2500
101	100	501	500	302	3000
151	150	601	600	362	3600
201	200	102	1000	722	7200
251	250	152	1500		

① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1RO. Capacitance greater than 10pF; for example: the marking of 100pF is 101.

Packaging Type

	70H	70P	70D	70A	70B	70C	70E
T: Horizontal Taping	\checkmark	V	\vee	\checkmark	V	$\sqrt{}$	V
TV: Vertical Taping		V	√	\checkmark	V		
B: Plastic Bag				\checkmark	$\sqrt{}$		
C: Waffle Box							V

◆Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

♦Capacitance & Rated Voltage Table

	Rated								Size(inch)							
Cap.pF	WVDC	DL (0	C70H 402)	DL (0	C70P (603)	DL ((C70A 0505)	DL ((C70D 0805)	DL (C	.C70R)710)	DL	.C70B 1111)	DL (2	.C70C 2225)	DL (3	.C70E 3838)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC								
0.1	OR1		- VVVDC		WVDC		VVVDC		VVVDC		WVDC		VVVDC		WWDC .		WWDC
0.2	OR2																
0.3	OR3																
0.4	OR4																
0.5	OR5																
0.6	0R6																
0.7	OR7 OR8																
0.8	OR9																
1.0	1R0																
1.1	1R1																
1.2	1R2																
1.3	1R3																
1.4	1R4			,													
1.5	1R5	Α,		Α,		Α,		Α,		В,							
1.6	1R6	В,		В,		В,		В,		C,							
1.7	1R7	С,		С,		С,		С,		D.		Α,					
1.8 1.9	1R8 1R9	D.		D.		D.		D.				В,					
2.0	2R0											C,					
2.1	2R1											D.					
2.2	2R2		200V											В,		В,	
2.4	2R4		Code											C,		C,	
2.7	2R7		201				450) (D.	2500)/	D.	3600V
3.0	3R0						150V						500V		2500V		
3.3	3R3						Code						Code		Code		Code
3.6	3R6				250V		151		250V		500V		501		252		362
3.9	3R9				Code		or		Code		Code		or		or		or
4.3 4.7	4R3 4R7				251		300V		251		501		1500V		3600V		7200V
5.1	5R1						Code						Code		Code		Code
5.6	5R6						301						152		362		722
6.2	6R2																
6.8	6R8																
7.5	7R5																
8.2	8R2																
9.1	9R1																
10	100																
11	110 120																
13	130																
15	150																
16	160									_							
18	180	F,		F,		F,		F,		G,		F,		F,		F,	
20	200	G,		G,		G,		G,		J.		G,		G,		G,	
22	220	J.		J.		J.		J.				J.		J.		J.	
24	240																
27	270		50V														
30 33	300 330		Code 500														
33	360		500														
39	390																
43	430																
47	470																

♦Capacitance & Rated Voltage Table

	Rated								Size(inch)							
Cap.pF	WVDC		.C70H)402)		.C70P 0603)		C70A (505)		.C70D 0805)		C70R 710)		_C70B 1111)		.C70C 2225)		.C70E 3838)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
51	510			F,													
56	560				250V								500V Code		2500V		
62	620			G,	Code 251						500V		501		Code 252		
68	680			J.	231					G,			or		or		3600V
75	750							F,	250V	J.	Code		1500V		3600V		Code
82	820						150V	G,	Code		501		Code		Code		362
91	910						Code	J.	251				152		362		or
100	101						151										7200\
110	111						or						300V				Code
120	121												Code		2500V		722
130	131						200V						301		Code		
150	151						Code						or		252		
160	161						201						1000V Code		or		
180	181					F,						F,	102	F,	3000V	F,	
200	201					G,						G,		G,	Code	G,	
220	221					J.							2001/		302		
240	241											J.	200V Code	J.		J.	3600V
270	271												201				Code
300	301												or		45001		362
330	331												600V		1500V Code		
360	361												Code		152		
390 430	391 431						150V						601		or 2000V		
470	471						Code								Code 202		
510	511						151								202		2500V
560	561												100V				Code
620	621												Code		1000V		252
680	681						50V						101		Code		
750	751						Code						or		102		
820	821						500 or						300V		or		
910	911						100V Code						Code		1500V		
1000	102						101						301		Code 152		
1100	112												200V		132		1000V
1200	122												Code				Code
1500	152												201				102
1800	182												201		500V		
2200	222														Code		
2400	242														501		
2700	272											_					
3000	302											G,	100V				
3300	332											J.	Code				500V
3600	362												101				Code
3900	392																501
4300	432																
4700	472																
5100	512												FO) (
5600 10000	562 103												50V Code 500				
10000	103												500				

DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

♦ DLC70 Lead Type and Dimensions

W/L/P	MS/MN	AR/AN
Tc T	To I	1 Tr. 1 Tr
RR/FN	RW/RN	AW/BN
T _C	T Tc	I Te

unit: inch(millimeter)

	Term.		Capacitor Dir	mensions			Lead Dimension	ons	Distant
Series	Code Length Width		Width (Wc)	Thick. (Tc)	Overlap (B)	Length (LL)	Width (WL)	Thickness (TL)	Plated Material
DLC70B	MS/MN	.135 ± .015 (3.43 ± 0.38)	.110 ± .010 (2.79 ± 0.25)	.100 (2.54)max	.016~.039 (0.40~1.00)	.250 (6.35)min	.093 ± .005 (2.36 ± 0.13)	.004 ± .001 (0.10 ± .025)	100% Ag
	MS/MN AR/AN				.020~.047 (0.50~1.20)	.500 (12.70) min	.240 ± .005 (6.10 ± 0.13)	.008 ± .001 (0.20 ± 0.025)	Silver- plated Copper
DLC70C	RR/FN	.245 ± .025	.250 ± .015	.165		.354 (9.00) min	.118 ± .005 (3.00 ± 0.13)	.012 ± .001 (0.30 ± 0.025)	
RW/RN	RW/RN	(6.22 ± 0.64)	(6.35 ± 0.38)	(4.19) max		.709 (18.00) min	Dia.=.031±.004 - (0.80±0.10)		Silver- plated Copper
	AW/BN					.906 (23.00) min	(0.8		
	MS/MN					.728 (18.50)	.350 ± .020 (8.89 ± 0.50)	.008 ± .001	Silver- plated
	AR/AN					min	.315 ± .010 (8.00 ± 0.25)	(0.20 ± .025)	Copper
DLC70E	RR/FN	.380 +.015~010 (9.65	.380 ± .010 (9.65 ± 0.25)	.177 (4.50)max	.024~.059	.354 (9.00) min	.118 ± .005 (3.00 ± 0.13)	.012 ± .001 (0.30 ± 0.025)	
_	RW/RN	+0.38~-0.25)	,	(4.30)1114	,,	.709 (18.00) min	Dia.=.031±.004		Silver- plated Copper
	AW/BN					.906 (23.00) min	3.0)	30±0.10)	

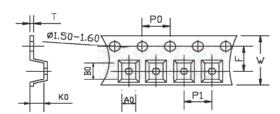
♦Performance

Item	Specifications
Quality Factor (Q)	Greater than 10,000, C \leq 1000pF, at 1 \pm 0.1 MHz. Greater than10,000, C $>$ 1000pF, at 1 \pm 0.1 KHz.
Insulation Resistance (IR)	Test Voltage: Applied Rated Voltage, and 500V maximum. 10^5 Megohms min. @ $+25$ °C. 10^4 Megohms min. @ $+125$ °C.
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage for 5 seconds, Rated Voltage ≤500VDC 150% of Rated Voltage for 5 seconds, 500VDC < Rated Voltage ≤1250VDC 120% of Rated Voltage for 5 seconds, Rated Voltage >1250VDC
Operating Temperature Range	-55 $^{\circ}$ C ~ +125 $^{\circ}$ C(70B 0.1pF ~ 1000pF can reach to -55 $^{\circ}$ C ~ +175 $^{\circ}$ C) Notes: For higher temperature, please contact with Dalicap.
Temperature Coefficient (TC)	$0\pm30~{\rm ppm/^{\circ}C};~(-55^{\circ}C\sim+175^{\circ}C,0\pm60~{\rm ppm/^{\circ}C})$
Capacitance Drift	\pm 0.2% or \pm 0.05pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table

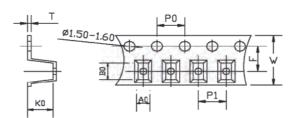
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦Environmental Tests

Item	Specifications	Method						
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.						
Moisture Resistance	whichever is greater.	MIL-STD-202, Method 106.						
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.						
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC						


DLC70 Series RF/Microwave Multilayer Chip Ceramic Capacitors

High RF Power Multilayer Chip Ceramic Capacitors

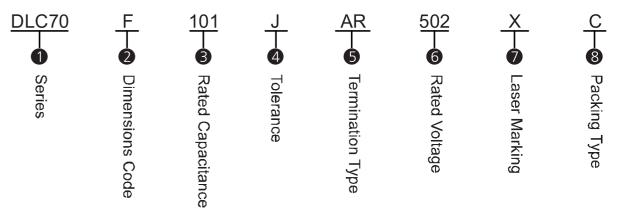

◆Tape & Reel Specifications


	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	P0 (mm)	P1 (mm)	T (mm)	F (mm)	Qty/min	Qty/reel	Tape Material
0505-H	1.50	1.75	1.15	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0505-H	1.40	1.80	0.95	8.00	4.00	4.00	0.25	3.50	500	3000	Plastic
0505-H	1.50	1.75	1.30	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0505-V	1.10	1.60	1.40	8.00	4.00	4.00	0.30	3.50	500	1000	Plastic
1111-H	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-H	2.85	3.60	2.40	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-V	2.30	3.55	2.70	12.00	4.00	4.00	0.40	5.50	500	1500	Plastic
2225-H	6.70	6.20	3.40	16.00	4.00	12.00	0.30	7.50	100	500	Plastic
2225-V	4.10	6.15	6.55	16.00	4.00	8.00	0.40	7.50	100	300	Plastic
3838-H	10.10	10.10	3.30	16.00	4.00	16.00	0.30	7.50	50	300	Plastic
3838-H	10.10	10.10	4.30	16.00	4.00	16.00	0.40	7.50	50	200	Plastic

Horizontal Orientation

Vertical Orientation

DLC70 Series High RF Power Multilayer Chip Ceramic Capacitors


◆Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

◆Product Applications

High RF Power Amplifiers, High Power Filter Networks, Wireless Demodulation.

♦Part Numbering

① Series: Dalicap 70 Series High RF Power Capacitor, Temperature Coefficient: 0 ± 30ppm/°C.

② Dimensions Code

unit:inch(millimeter)

DLC70 Series

	DLC70F	DLC70G	DLC70L
Length	.614(+.015~—.010) (15.60+0.38~—0.25)	.760(+.015~—.010) (19.30+0.38~—0.25)	1.350±.050 (34.29±1.27)
Width	.433 ±.010(11.0 ±0.25)	$.760 \pm .010 (19.30 \pm 0.25)$	1.350 ±.050(34.29±1.27)
Thickness	.197(5.00)max	.197(5.00)max	.197(5.00)max

3 Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point. Capacitance is not less than 10pF; for example: 101=100pF, the third number is the power of 10.

4 Tolerance

Code	В	С	D	F	G	J
Tolerance	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%

⑤ Termination Type

Code	W	Р	L
Туре	100% Sn Solder over	100% Sn Solder over Copper	90% Sn 10% Pb Solder over
	Nickel Plating	Plating (RoHS Compliant)	Nickel Plating (Tin/Lead)

DLC70 Series High RF Power Multilayer Chip Ceramic Capacitors

Dalicap

DLC70 Series High RF Power Multilayer Chip Ceramic Capacitors

⑤ Termination Type

Code	MS	AR	AW	RW
Туре	Microstrip	Axial Ribbon	Axial Wire	Radial Wire

Code	MN	AN	BN	RN
Туре	Non-mag Microstrip	Non-mag Axial Ribbon	Non-mag Axial Wire	Non-mag Radial Wire

Code	Rated Voltage(V)	Code	Rated Voltage(V)
301	300	302	3000
501	500	362	3600
102	1000	502	5000
152	1500	802	8000
202	2000	103	10000
252	2500		

① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0. Capacitance is not less than 10pF; for example: the marking of 100pF is 101.

® Packaging Type

	70F	70G	70L
C: Waffle Tray packaging	\checkmark	\checkmark	\vee
I: Special packaging		Consult with DALICAP	

♦ Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦Capacitance & Rated Voltage Table

	Rated			Size	(inch)		
Cap.	WVDC		LC70F (6040)		LC70G 7575)		.C70L 80130)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
1.0	1R0						
1.2	1R2						
1.5	1R5						
1.6	1R6						
1.8	1R8						
2.2	2R2						
2.7	2R7						
3.3	3R3						
3.6	3R6	В,					
3.9	3R9	C,		В,			
4.7	4R7	D.		С,			
5.6	5R6			D.			
6.8	6R8		5000V	υ.			
8.2	8R2						
10	100		Code502				
12	120		Extended		5000V		
15	150		Voltage		Code502		
18	180		8000V		Extended		
22	220		Code802		Voltage		
27	270				8000V Code802		
33	330						
39	390						
47	470						
56	560						
68	680			F,			
82	820			G,			
100	101			J.			
120	121	F,		7.			
150	151	., G,					
180	181	J.	3000V				
200	201	J.	Code302				
220	221		Extended				
270	271		Voltage				
300	301		5000V				
330	331		Code502				
390	391		CodeSoZ		3000V		10KV
470	471				Code302	G,	Code
560	561				Extended	J.	
680	681				Voltage		103
820	821		2000V		5000V		
1000	102		Code202		Code502		
1200	122		Extended		C002302		
1500	152		Voltage				
1800	182		3000V Code302				
2200	222		CodesuZ				

	Rated	Size(inch)					
Cap.	WVDC		LC70F (6040)	D (LC70G (7575)	D (1:	LC70L 30130)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
2700	272		1000V		3000V		
3300	332	F,	Code102		Code302 Extended		
4700	472	G,	Extended		Voltage		
5100	512		Voltage		5000V Code502	G,	5KV
5600	562	J.	2000V		1000V	J.	Code
6800	682		Code202	G,	Code102		502
7500	752			J.	Extended Voltage		302
8200	822				3000V		
10000	103				Code302		
12000	123				2000\/		
15000	153				2000V Code		
18000	183				202		3000V
20000	203				202		Code
22000	223						302
33000	333						302
47000	473					J.	
56000	563						
68000	683						1000V
82000	823						Code
100000	104						102
120000	124						102

DLC70 Series High RF Power Multilayer Chip Ceramic Capacitors

DLC70 Series High RF Power Multilayer Chip Ceramic Capacitors

♦ DLC70 Lead Type and Dimensions

W/L/P	MS/MN	AR/AN
Tc g	T. T.	The state of the s
FN	RW/RN	AW/BN
Le Tr. Tr. We Le S	Tre Vite	ET.

unit: inch(millimeter)

	Term.		Capacitor Dime	ensions			Lead Dimension	ons	Plated	
Series	Code	Length (Lc)	Width (Wc)	Thick. (Tc)	Overlap (B)	Length (LL)	Width (W _L)	Thickness (TL)	Material	
	MS/MN AR/AN	.614				.748 (19.00) min	.350 ± .010 (8.89 ± 0.25)	.008 ± .001 (0.20 ± 0.025)	6.1	
DLC70F	RW/RN	+.015~010 (15.60 +0.38~-0.25)	(11.00 ± 0.25)	(11.00 ± 0.25) (5.0	.197 (5.00) max	$(5.00) \begin{array}{c} .024 \sim .059 \\ (0.60 \sim 1.50) \end{array}$.748 (19.00) min	Dia.=.030±.004		Silver- plated Copper
	AW/BN					.906 (23.00) min	(0.	76±0.10)		
	MS/MN AR/AN	.760		(5.00)	(5.00) .024~.059	.748 (19.00) min	.591 ± .010 (15.00 ± 0.25)	.008 ± .001 (0.20 ± 0.025)		
DLC70G	RW/RN	+.015~010 (19.30 +0.38~-0.25)	.760 ± .010 (19.30 ± 0.25)			.748 (19.00) min	Dia.=.030±.004		Silver- plated Copper	
	AW/BN					.906 (23.00) min	(0.1	76±0.10)		
DI 070I	MN/AN	1.350±.050	1.350±.050	.197 (5.00)	.039~.071	.748 (19.00) min	1.299 ± .020 (33.00 ± 0.50)	.012 ± .001 (0.30 ± 0.025)	Silver- plated	
DLC70L	FN	(34.29±1.27)	(34.29±1.27)	max	(1.00~1.80)	.669 (17.00) min	.157 ± .008 (4.00 ± 0.20)	.012 ± .001 (0.30 ± 0.025)	Copper	

♦Performance

ltem	Specifications
Quality Factor (Q)	Less than 1000pF, Q value more than 2000, Test frequency 1MHz; More than 1000pF, Q value more than 2000, Test frequency 1KHz;
Insulation Resistance (IR)	Test Voltage: 500V 10^5 Megohms min. @ +25°C at rated WVDC. 10^4 Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage for 5 seconds, Rated Voltage ≤500VDC 150% of Rated Voltage for 5 seconds, 500VDC < Rated Voltage ≤1250VDC 120% of Rated Voltage for 5 seconds, Rated Voltage >1250VDC
Operating Temperature Range	−55°C to +125°C Notes: For higher temperature, please contact with Dalicap.
Temperature Coefficient (TC)	0±30 ppm/℃
Capacitance Drift	\pm 0.2% or \pm 0.05pF, whichever is greater.
Piezoelectric Effects	None

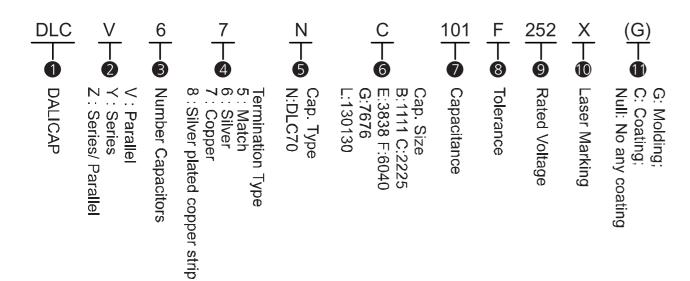
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

◆Environmental Tests

Item	Specifications	Method
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.
Moisture Resistance	whichever is greater.	MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤ 500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤ 1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC

Capacitor Assemblies Offering

Capacitor Assemblies Offering


♦ Product Features

High Operating Voltage, High Operating Current, Extended Capacitance, Tighter Tolerances, High Reliability, High Q, Ultra-low ESR, Non-Magnetic.

◆ Typical Applications Field

High Power RF, Medical Electronics, Broadcast, Semiconductor Manufacturing, High Magnetic Environments, Inductive Heating.

♦ Part Numbering

Capacitance: For capacitor values requiring 3 significant digits,

e.g. 1222.5pF = 1222R5

e.g. DLCV66NC101F252X

Silver bracket assembly with six DLC70 pieces in parallel, Capacitance is 100pF,

Capacitance tolerance is $\pm 1\%$, WVDC is 2500 V and Laser marking.

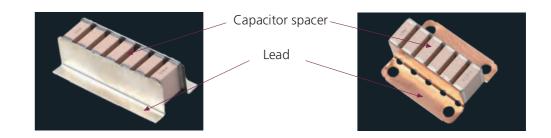
e.g. DLCY26NG1222R5G203X

Silver bracket assembly with two DLC70 pieces in series, Capacitance is 1222.5pF,

Capacitance tolerance is $\pm 2\%$, WVDC is 20,000V and Laser marking.

♦ Capacitance and Voltage

By Buyer's requirements using existing drawings, mechanical sketches, or we can help with capable modeling of assemblies thermal rise predictions.


Capacitor Assemblies Offering

◆Typical Assembly Configurations

① Parallel Assemblies

unit: inch(millimeter)

	70B	70C	70E	70F	70G			
Lead Material		Silver-plated Copper or silver						
Lead Thickness	.004 or .010	(0.1 or 0.25)	.010 or .020 (0.25 or 0.51)					
Lead Length (max.)	.50 (12.7)	.75 (19.1)	2.0 (50.8)					
Capacitor Spacer (typ.)	.050 to .078	3 (1.3 to 2)	.06 to .10 (1.5 to 2.5) .078 to .197 (2.0 to 5.0)					
Mtg Configuration	Horizontal/Vertical							

② Series Assemblies

unit: inch(millimeter)

	70C	70E	70F	70G							
Lead Type		L-Bracket									
Lead Material		Silver-plated Coppe	er or silver								
Lead Thickness	.010 (0.25)	.010 or .020 (0.2	5 or 0.51)								
Lead Length (max.)	.75 (19.1)	1.0 (25.4	1)								
Capacitor Spacer (typ.)		0 to .157 (0 to 4)									
Mtg Configuration		Horizont	al								

3 Epoxy Molding

4 Other Assemblies By Buyer's requirement

DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

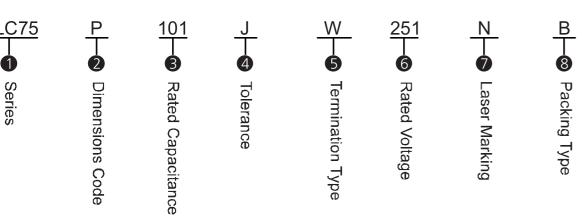
DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

◆Product Features

Ultra-Low ESR, High Working Voltage, High RF Power, High Self-Resonance Frequency.

◆ Product Applications

Typical Circuit Applications: High Power Filter Networks, Mixers, Couplers, Matching Networks, Output


Coupling, Antenna Coupling, DC blocking, Bypass.

Typical Applications Field: VHA/UHF/Microwave Communication Systems, Mobile Base Stations,

Repeaters, Wireless Broadcasting Equipments, Radio Stations,

Radar, WiMAX, Satellite Communications.

♦ Part Numbering

① **Series**: Dalicap 75 Series Low ESR Microwave Capacitor, Temperature Coefficient: 0 ± 30ppm/°C.

2 Dimensions Code

unit:inch(millimeter)

	DLC75N	DLC75H	DLC75P DLC75D		DLC75B	DLC75R
Length	.024±.001	.040 ± .004	.063±.006	.078 ± .010	.110(+.020~—.010)	.070 ± .006
	(0.60±0.03)	(1.02 ± 0.10)	(1.60±0.15)	(2.00 ± 0.25)	(2.79+0.51~—0.25)	(1.78 ± 0.15)
Width	.012±.001	.020 ± .004	.031±.006	.049 ± .010	.110 ± .010	.080 ± .006
	(0.30±0.03)	(0.51 ± 0.10)	(0.80±0.15)	(1.20 ± 0.25)	(2.79 ±0.25)	(2.03 ± 0.15)
Thickness	.012±.001 (0.30±0.03)	.020 ± .004 (0.51 ± 0.10)	.031±.006 (0.80±0.15)	.057(1.45)max	.102(2.60)max	.120(3.04)max

3 Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point
Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

4 Tolerance

Code	А	В	С	D	F	G	J	
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	

⑤ Termination Type

Code	W
Туре	Nickel, Plated 100% Sn(RoHS)

Rated Voltage

Code	Rated Voltage(V)
250	25
500	50
251	250
501	500

① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0.

Capacitance is not less than 10pF; for example: the marking of 100pF is 101.

N denotes no marking.

Packaging Type

	75N	75H	75P	75D	75B	75R
T: Horizontal Taping	√	V	√	√	V	\checkmark
B: Bulk packaging in a bag			√	√	V	√
TV: Vertical Taping				√	V	

♦ Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦ All products are in compliance with RoHS instruction.

DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

♦ Capacitance & Rated Voltage Table

	Rated WVDC						Size(i	nch)					
Cap.pF	WVDO	DL (C	DLC75N (0201) DLC75H (0603)		.C75P)603)	DLC75D (0805)		DLC75R (0708)		DLC75B (1111)			
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated
0.1	OR1												
0.2	OR2												
0.3	OR3												
0.4	OR4												
0.5	OR5												
0.6	OR6												
0.7	OR7												
0.8	OR8												
0.9	OR9				50V								
1.0	1R0				Code								
1.1	1R1				500								
1.2	1R2				200V								
1.3	1R3				or								
1.4	1R4	Α,		Α,	201	Α,		Α,					
1.5	1R5												
1.6	1R6	В,		В,	250V	В,		В,					
1.7	1R7	С,	25V	С,	Code	С,		С,				В,	
1.8	1R8	D.	Code	D.	251	D.		D.				C,	
1.9	1R9											D.	
2.0	2R0		250										
2.1	2R1									В,			
2.4	2R2									С,			
2.7	2R4									D.			
3.0	2R7 3R0									υ.			
3.3	3R3												
3.6	3R6						250V		250V				
3.9	3R9										500V		
4.3	4R3						Code		Code		Code		500
4.7	4R7	-					251		251		501		500\
5.1	5R1												Code
5.6	5R6												501
6.2	6R2												or
6.8	6R8			Α,	50V	Α,							1000
7.5	7R5	В,			Code	В,		В,					Code
8.2	8R2	C.		В,		C.		C.					102
9.1	9R1			C.	500								
10	100				or								
11	110				200V								
12	120	F,			Code								
13	130	G,			201								
15	150	J.		_									
16	160			F,		F,		F,		G,		F,	
18	180			G,									
20	200			J.		G,		G,		J.		G,	
22	220					J.		J.				J.	
24	240												
27	270												
30	300				50V Code								
33	330				Code 500								
36	360												
39	390												
43	430	-											
47	470												

♦Capacitance & Rated Voltage Table

	Rated						Size	(inch)				
	WVDC		C75N		.C75H		.C75P	D	LC75D		.C75R	DL	.C75B
Cap.pF			201)	-	0402))603)		0805))708)		1111)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
51	510												500V
56	560					Е	2501/						Code
62 68	620					F, G,	250V Code			G,	500V		501
75	680 750					J.	251			J.	Code 501		1000V
82	820					J.		F,	250V	٥.	501		Code 102
91	910							G,	Code				102
100	101							J.	251				
110	111												300V
120	121												Code
130	131											Е	301
150	151											F,	600V Code
160	161											G,	601
180 200	181											J.	301
220	201												
240	221 241												2001/
270	271												200V Code
300	301												201
330	331												500V
360	361												Code
390	391												501
430	431												
470	471												100)/
510	511												100V Code 101 500V Code 501
560	561											G,	500V Code
620 680	621											J.	501
750	681 751	-										J.	50V
820	821	1											Code
910	911												500
1000	102												

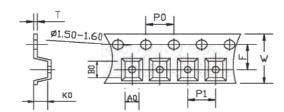
DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

Dalicap Dalicap

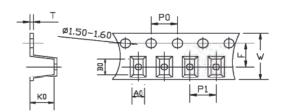
DLC75 Series Ultra-Low ESR, RF/Microwave Ceramic Capacitors

♦ Performance

Item	Specifications
Quality Factor (Q)	Greater than 2,000 at 1 \pm 0.1MHz
Insulation Resistance (IR)	10^5 Megohms min. @ +25°C at rated WVDC. 10^4 Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.
Operating Temperature Range	−55 $^{\circ}$ C to +150 $^{\circ}$ C Notes: For higher temperature, please contact with Dalicap.
Temperature Coefficient (TC)	0 ± 30ppm/℃
Capacitance Drift	$\pm 0.2\%$ or ± 0.05 pF, whichever is greater.
Piezoelectric Effects	None


◆Environmental Tests

Item	Specifications	Method
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.
Moisture Resistance	whichever is greater.	MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC


◆Tape & Reel Specifications

	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	P0 (mm)	P1 (mm)	T (mm)	F (mm)	Qty/min	Qty/reel	Tape Material
0201 - H	0.40	0.70	-	8.00	4.00	2.00	0.42	3.50	1000	15000	Paper
0402 - H	0.70	1.20	-	8.00	4.00	2.00	0.65	3.50	1000	10000	Paper
0603-H	1.05	1.80	-	8.00	4.00	4.00	0.95	3.50	500	4000	Paper
0708-H	1.90	2.65	2.20	8.00	4.00	4.00	0.25	3.50	500	1000	Plastic
0805-H	1.45	2.30	0.95	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0805-H	1.37	2.20	1.20	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0805-V	1.35	2.25	1.35	8.00	4.00	4.00	0.22	3.50	500	1000	Plastic
1111-H	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-H	2.85	3.60	2.40	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-V	2.30	3.55	2.70	12.00	4.00	4.00	0.40	5.50	500	1500	Plastic

Horizontal Orientation

Vertical Orientation

Broadband Ceramic Capacitors

Broadband Ceramic Capacitors

◆Product Features

Series	Typical operating frequency range	Insertion Loss	Plated Material	Packaging Type
(.010 " × .005 ")01005BB104MW4R0	16KHz(-3dB) to >67GHz	<1dB,typical		40K pcs/reel, lower quantities in cut tape
(.020 " × .010 ")0201BB104KW160	16KHz(-3dB) to >40GHz	<1dB,typical	Au/Co /Dolle)	15K pcs/reel,
(.020" × .010")0201BB103KW250	16KHz(-3dB) to >32GHz	<1dB,typical	Au/Sn (RoHS)	lower quantities in cut tape
(.040 " × .020 ")0402BB103KW500	16KHz(-3dB) to 40GHz	<1dB,typical	Au/Sn (RoHS)	10K pcs/reel,
(.040 " × .020 ")0402BB104KW500	16KHz(-3dB) to 50GHz	<1.2dB,typical	Au/ 311 (NOT13)	lower quantities in cut tape
(.080 " × .050 ")0805BB103KW101	16KHz(-3dB) to 3GHz	<0.25dB,typical	Ni/Sn(RoHS)	

◆Mechanical Dimensions


unit:inch(millimeter)

			Capacitor Dimensions										
Outlines	Code	Length (L)	Width (W)	Thick. (T)	(S)								
	01005	$.016 \pm .001 \\ (0.40 \pm 0.03)$	$.008 \pm .001 \\ (0.20 \pm 0.03)$	$.008 \pm .001 \\ (0.20 \pm 0.03)$.005(0.13)min								
W L	0201	.023 ± .001 (0.58 ± 0.03)	.012 ± .001 (0.30 ± 0.03)	.0118(0.30)max	.0078(0.20)min								
T SA	0402	.040 ± .004 (1.016 ± 0.102)	$.020 \pm .004 \\ (0.508 \pm 0.102)$.024(0.61)max	.016(0.406)min								
	0805	.080 ± .006 (2.03 ± 0.15)	.050 ± .006 (1.27 ± 0.15)	.040(1.02)max	.044(1.12)min								

♦Electrical Specifications

Item			Series					
Rated Voltage	01005BB104 MW4R0	0201BB104 KW160	0201BB103 KW250	0402BB103 KW500	0402BB104 KW500	0805BB103 KW101		
	4WVDC	16WVDC	25WVDC	50WVDC	50WVDC	100WVDC		
Capacitance	100nF	100nF 10nF 10nF 100nF 10						
Operating Temperature Range.	-55°C to +85°C							
Insulation Resistance (IR)	10^{11} Ω min. @ +25°C @ rated WVDC							
Dielectric Withstanding Voltage (DWV)	250% of rated v	oltage for 5 sec	conds.					
Temperature Coefficient (TC)	±15%							

◆Part Numbering

Broadband Ceramic Capacitors

♦Introduction

There are a number of circuits that require coupling RF signals or bypassing them to ground while blocking DC over extraordinarily large RF bandwidths. The applications for which they are intended typically require small, surface-mountable (SMT) units with low insertion losses, reflections, and impedances across RF frequencies extending from the tens of KHz to the tens of GHz. and temperatures typically ranging from -55 to +85 °C. This note focuses on a particular implementation of these devices -- multilayer ceramic capacitors (MLCCs)- and how to obtain the best performance when they're used on various substrates.

Broadband capacitors are used in the "signal integrity" market -- optoelectronics/high-speed data; ROSA/TOSA (Transmit/Receive optical subassemblies); SONET (Synchronous Optical Networks); broadband test equipment - as well as in broadband microwave and millimeter wave amplifiers (MMICs, GaN transistors) and oscillators. The basic requirement in the former is to produce an output waveform that closely replicates an input waveform, typically a train of digital pulses, as shown in Fig.1.

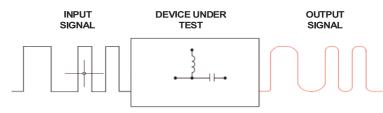


Fig.1"Signal Integrity"- output replication of input

While RF and microwave devices are typically measured in the frequency domain, digital systems are usually characterized in the time domain, and so it is necessary to make a connection between the two (Fig.2).

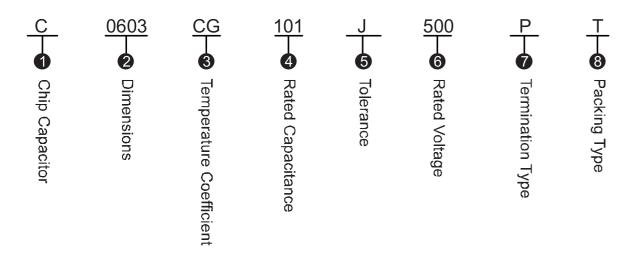
FREQUENCY DOMAIN

- Insertion loss
- Reflection

Fig.2 Frequency domain and time domain parameters

TIME DOMAIN

- Rise and fall times
- Eye opening
- Jitter


General Purpose Non-Magnetic Multilayer Ceramic Capacitors

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

◆Product Features

Non-Magnetic, Suitable for MRI and other equipment requiring non-magnetic.

♦Part Numbering

① **C**: General Purpose Non-Magnetic Multilayer Ceramic Capacitors

2 Dimensions

					unit: millimeter
Series	L	W	Т	B(Min)	B(Max)
0603	1.60 ± 0.10	0.80 ± 0.10	0.80 ± 0.10	0.20	0.50
0805	2.00 ± .020	1.20 ± .020	1.40	0.25	0.60
1206	3.20±.020	1.60 ± .020	1.40	0.25	0.60
1210	3.20 ± .020	2.50 ± .020	2.00	0.25	0.70

3 Temperature Coefficient

CG: 0 ± 30 ppm/°C

X: ±15%

4 Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

⑤ Tolerance

Code	В	С	D	G	J	К
Tolerance	±0.1pF	±0.25pF	±0.5pF	±2%	±5%	±10%

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

Code	Rated Voltage(V)	Code	Rated Voltage(V)
250	25	251	250
500	50	501	500
101	100	102	1000
201	200	202	2000

① Laser Marking

P: 100% Sn Solder over Copper Plating (RoHS Compliant)

Packaging Type

T: Tape carrier packing

	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	P0 (mm)	P1 (mm)	T (mm)	F (mm)	Qty/min	Qty/reel	Tape Material
0603	1.05	1.80	0.90	8.00	4.00	4.00	0.90	3.50	1000	4000	Paper
0805	1.40	2.20	1.20	8.00	4.00	4.00	0.22	3.50	1000	3000	Plastic
1206	1.91	3.51	1.30	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic
1210	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

♦ Capacitance & Rated Voltage Table

CG			0603	3			08	05				1206			1210					
Code.	25	50	100	200	250	50		200	250	50	100	200	250	500	50	100	200	250	500	1000
1R0																				
1R2																				
1R5																				
1R8																				
2R2																				
2R7																				
3R3																				
3R9																				
4R7																				
5R6																				
6R8																				
8R2																				
100																				
120																				
150																				
180																				
220																				
270																				
330																				
390																				
470																				
560																				
680																				
820																				
101																				
121																				
151																				
181																				
221																				
271																				
331																				
391																				
471																				
561																				
681																				
821																				
102																				
102																				

♦Capacitance & Rated Voltage Table

unit: V

X7R			0603	}			ns ns	05		1206					1210					
Code.	25	50		200	250	50	100	200	250	50	100		250	500	50	100		250	500	1000
331	25	30	100	200	250	50	100	200	250	50	100	200	250	300	30	100	200	250	300	1000
471																				
681																				
821 102																				
152																				
222																				
332																				
472																				
682																				
103																				
153																				
223																				
333																				
473																				
683																				
104																				
154																				
224																				
334																				
474																				
684																				
105																				
103																				
<u> </u>																				

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

♦ Specifications and Test Methods

No.	Item	Specification	Test Method							
1	Operating Temperature	C0G: −55℃ ~+125℃ X7R: −55℃ ~+125℃								
2	Appearance	No defects or abnormality	Visual inspection: ×10 microscope.							
3	Dimensions	See the previous pages	Callipers inspection							
4	Capacitance	Shall be Within the applicable tolerance specified.								
5	D.F.	COG: Cap ≥ 30pF, Q ≥ 1000; Cap < 30pF, Q ≥ 400+20C X7R: D.F. ≤ 2.5%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
6	Insulation Resistance (IR)	No less than $10G\Omega$ or $500M\Omega\mu$ F, whichever is smaller.	Voltage: DC Rated Voltage Charging Time: 1~2 min Charge/discharge current: 50mA max. Measurement Temperature: 25°C Measurement Humidity: 75%							
7	Dielectric Withstanding Voltage (DWV)	Shall be no evidence of breakdown or visible evidence of arcing or damage.	1. Test Voltage: 250% of Rated Voltage, Rated Voltage≤500VDC 150% of Rated Voltage, 500VDC < Rated Voltage≤ 1250VDC 120% of Rated Voltage, Rated Voltage > 1250VDC 2. Applied Time: 1s to 5 s 3. Charge/discharge current: 50mA max.							

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

♦Specifications and Test Methods

No.	Item	Specification	Test Method
8	Temperature Coefficient	Type Temperature coefficient ppm/ $^{\circ}$ C COG 0 ± 30 Type Temperature Characteristics $\pm 15\%$	Conduct the five cycles according to the temperatures as below.
9	Adhesive Strength of Termination	No removal of the terminations or other defect should occur.	Pressurizing force: 01R5/0201: 2N; 0402/0603: 5N; 0805/1206/1210/1812: 10N Test time: 10±1 sec.
10	Bending Strength	No cracking shall occur. Cap change: C0G: within ±5% or 0.5pF whichever is larger X7R: within ±12.5%	Solder the capacitor on test jig (glass epoxy board). Then apply a force in the direction shown in below fig. Flexure: 1mm; Holding time: 5±1s Pressurizing Speed:1.0mm/s R230 Pressurize Flexure Capacitance meter 45 Fig.2 (in mm) Fig.2 (in mm)
11	Solderability of Termination	Shall be at least 85 percent covered with a smooth solder coating.	Immerse the capacitor in a eutectic solution requirement temperature (230±5°C) for 2±0.5 seconds. Capacitor shall be immersed to a depth of 10mm.

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

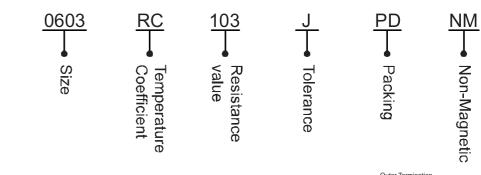
♦ Specifications and Test Methods

No.	Item		Specification	Test Method				
		Appearance	No evidence of mechanical damage or delamination or exposed.					
12	Resistance to	Capacitance Change ∆C	C0G: Within $\pm 2.5\%$ or $0.25pF$ (Whichever is larger) X7R: Within $\pm 12.5\%$.	Immerse the capacitor in a eutectic solution at $265 \pm 5^{\circ}$ C for 10 ± 1 seconds. Capacitor shall be				
	Soldering Heat	D.F.	To meet initial requirement.	immersed to a depth of 10mm.				
		Insulation Resistance	No less than $10G\Omega$ or $500M\Omega\mu$ F, Whichever is smaller.	And following a minimum 10 minutes to maximum 24 hours cooling period.				
		Appearance	No evidence of mechanical damage					
		Capacitance Change ΔC	C0G: Within $\pm 2.5\%$ or $0.25pF$ (Whichever is larger) X7R: Within $\pm 7.5\%$.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Set it for 24 ± 2 hours at room temperature.				
13	Temperature Cycle	D.F.	To meet initial requirement.	Step Temperature(°C) Time(minutes)				
	·	Insulation Resistance	No less than $10G\Omega$ or $500M\Omega\mu\text{F}$, Whichever is smaller.	1 $-55 \circ (0 \sim -3 \circ)$ 30 ± 3 2 $25 \circ $ $2 \sim 3$ 3 $125 \circ (0 \sim -3)$ 30 ± 3 4 $25 \circ $ $2 \sim 3$				

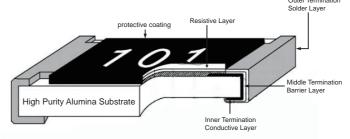
Non-Magnetic Chip Resistors

Non-Magnetic Chip Resistors

♦Product Features


- 1. Non-Magnetic chip resistors by copper plating on middle termination.
- 2. Suited for reflow and flow solder.
- 3. Suitable for no lead soldering.
- 4. Lead free, Meet RoHS compliant.

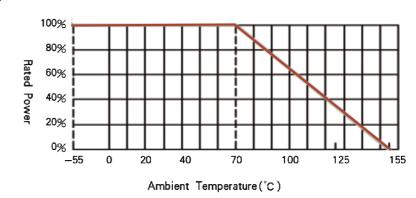
◆Product Applications


Chip resistor

MRI medical equipment, Measurement instrument, other non-magnetic applications.

♦Part Number

♦Configuration



Construction of Chip-Resistor

♦Dimensions

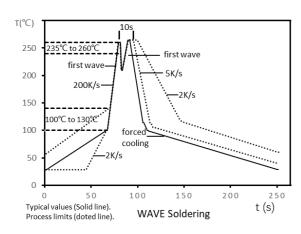
	Size	L	W	С	D	Т
L ×C	0603	1.60 ± 0.10	0.80 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	0.45 ± 0.10
w// 103 //	0805	2.00 ± 0.10	1.25 ± 0.10	0.40 ± 0.20	0.40 ± 0.20	0.50 ± 0.10
T ♣ D	1206	3.10±0.10	1.60 ± 0.10	0.50 ± 0.20	0.50 ± 0.25	0.55 ± 0.10

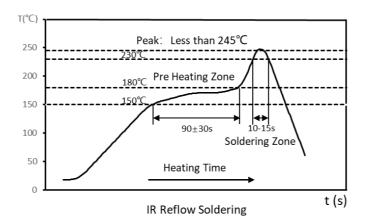
♦Power Derating Curve

Non-Magnetic Chip Resistors

ion-magnetic omp ivesistors

♦Rated Value


Size	Rated Power	RCWV	Overload	Tolerance	Temperature Coefficient	Resistan	ce Range	Standard Resistance	
OIZC	At 70°C	Max.	Voltage Tolerance Max.		ppm/°C	Min.	Max.	Value	
0000	1/10\4/	F0\/	1001/	± 1%(F)	±100	1Ω	10M Ω	E-96	
0603	1/10W	50V	100V	±5%(J)	±200	0Ω&1Ω	10ΜΩ	E-24	
0805	1/8W	150V	300V	± 1%(F)	±100	1Ω	10ΜΩ	E-96	
0605	1/000	1500	3000	±5%(J)	±200	0Ω&1Ω	10ΜΩ	E-24	
1206	1/4W	200V	400V	± 1%(F)	±100	1Ω	10ΜΩ	E-96	
1200	1/400	2007	4000	±5%(J)	± 200	0Ω&1Ω	10ΜΩ	E-24	


Jumper: 0603 size maximum resistance \leq 50m Ω and rated current \leq 1A.

0805, 1206 size maximum resistance ≤ 50 m Ω and rated current ≤ 2 A.

 $1\,\Omega\sim10\,\Omega$: Temperature Coefficient of Resistance for 0603, 0805, 1206 = -300 \sim +500ppm/°C .

♦ Soldering Temperature Curve

◆Resistance Marking

R100

4 digit marking for $\pm 1\%$.

For example: $1R00 = 1\Omega$; $R100 = 100m\Omega$; $R047 = 47m\Omega$;

R10

3 digit marking for 0603 $\pm 1\%$.

For example: $1R0 = 1\Omega$; $R10 = 100m\Omega$; $R50 = 500m\Omega$;

E-24 Series

473

3 digit marking for $\pm 5\%$ E24.

For example: $473 = 47k\Omega$; $1R5 = 1.5\Omega$; $0 = 0\Omega$;

E-96 Series

1542

4 digit marking for E96.

For example: $1542 = 15k4\Omega$; $22R1 = 22.1\Omega$;

02C

3 digit marking for E96-0603.

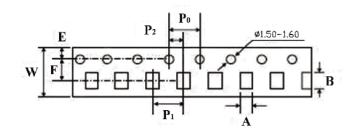
For example: $02C = 102 \times 100 = 10.2k \Omega$;

Non-Magnetic Chip Resistors

♦0603 1% Marking Table

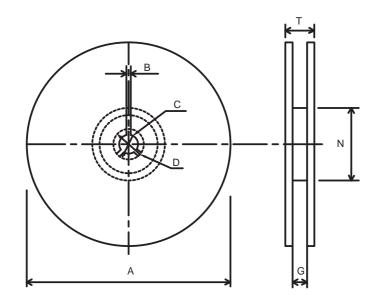
Code	E48	E96									
01	100	100	25	178	178	49	316	316	73	562	562
02		102	26		182	50		324	74		576
03	105	105	27	187	187	51	332	332	75	590	590
04		107	28		191	52		340	76		604
05	110	110	29	196	196	53	348	348	77	619	619
06		113	30		200	54		357	78		634
07	115	115	31	205	205	55	365	365	79	649	649
08		118	32		210	56		374	80		665
09	121	121	33	215	215	57	383	383	81	681	681
10		124	34		221	58		392	82		698
11	127	127	35	226	226	59	402	402	83	715	715
12		130	36		232	60		412	84		732
13	133	133	37	237	237	61	422	422	85	750	750
14		137	38		243	62		432	86		768
15	140	140	39	249	249	63	442	442	87	787	787
16		143	40		255	64		453	88		806
17	147	147	41	261	261	65	464	464	89	825	825
18		150	42		267	66		475	90		845
19	154	154	43	274	274	67	487	487	91	866	866
20		158	44		280	68		499	92		887
21	162	162	45	287	287	69	511	511	93	909	909
22		165	46		294	70		523	94		931
23	169	169	47	301	301	71	536	536	95	953	953
24		174	48		309	72		549	96		976

Code	Α	В	C	D	Е	F	G	Н	X	Υ	Z
Mulitiplier	10°	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	10 ⁷	10 ⁻¹	10 ⁻²	10 ⁻³


♦Standard Resistance Value

E3	10			22				47									
E6	1	0	1	5	2	2	3	3	4	.7				68			
E12	10	12	15	18	22	27	33	39	47	56	68	82					
E24	10	11	12	13	15	16	18	20	22	24	27	30	33	36	39	43	47
LZ4	51	56	62	68	75	82	91										
	100	102	105	107	110	113	115	118	121	124	127	130	133	137	140	143	147
	150	154	158	162	165	169	174	178	182	187	191	196	200	205	210	215	221
E96	226	232	237	243	249	255	261	267	274	280	287	294	301	309	316	324	332
Loo	340	348	357	365	374	383	392	402	412	422	432	442	453	454	475	487	499
	511	523	536	549	562	576	590	604	619	634	649	665	681	698	715	732	750
	768	787	806	825	845	866	887	909	931	953	975						

Non-Magnetic Chip Resistors


Non-Magnetic Chip Resistors

◆Tape and Reel Package

unit:millimeter

	A (mm)	B (mm)	W (mm)	F (mm)	E (mm)	P0 (mm)	P1 (mm)	P2 (mm)
0603	1.10 ± 0.20	1.90 ± 0.20	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05
0805	1.65 ± 0.20	2.40 ± 0.20	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05
1206	2.00 ± 0.20	3.60 ± 0.20	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05

unit:mi**ll**imeter

	A (mm)	N (mm)	C (mm)	D (mm)	B (mm)	G (mm)	T (mm)	Qty/reel
0603	178.0 ± 2.0	60.0 ± 0.5	13.0 ± 0.5	20min	2.0 ± 0.5	10.0 ± 1.5	14.9max	5000
0805	254.0 ± 2.0	100.0 ± 1.0	13.5 ± 0.5	20min	2.0 ± 0.5	10.0 ± 1.5	14.9max	10000
1206	330.0 ± 2.0	100.0 ± 1.0	13.5 ± 0.5	20min	2.0 ± 0.5	10.0 ± 1.5	14.9max	20000

♦Specification and Test Methods

Item	Specifications	Test Methods
DC Resistance	F: ±1%; J: ±5%;	IEC 60115-1/JIS C 5201-1, Clause 4.5. Measure the resistance value.
Short time Overload	J: $\Delta R \le \pm (2\%+0.1\Omega)$ F: $\Delta R \le \pm (1\%+0.05\Omega)$	IEC 60115-1/JIS C 5201-1, Clause 4.13. 2.5 x Rated voltage or Max. Overload Voltage for 5 second. Measure resistance after 30 minutes.
Solderability	Over 95% of termination must be covered with (Sn+Ag+Cu)	IEC 60115-1/JIS C 5201-1, Clause 4.17. After immersing flux, dip in the $245\pm2^\circ\!$
Resistance to Solder Heat	J: Δ R \leq \pm (1%+0.1 Ω) F: Δ R \leq \pm (0.5%+0.05 Ω) No mechanical damage.	IEC 60115-1/JIS C 5201-1, Clause 4.18. With $260\pm5^\circ\!$
Temperature Coefficient of Resistance(TCR)	Refer to the rating table information.	IEC 60115-1/JIS C 5201-1, Clause 4.8. Test temperature point is -55°C and +155°C.
Load Life Humidity	J: Δ R≤ ± (3%+0.1Ω) F: Δ R≤ ± (1%+0.05Ω)	IEC 60115-1/JIS C 5201-1, Clause 4.24. Maintain the temperature of the resistor at 40±2°C and 90%~95% R.H. with the rated voltage applied. Cycle ON for 1.5 hours and OFF for 0.5hour for 1000(-0~+48) hours. After 1-4 hours, measure the resistance value.
Load Life	J: $\Delta R \le \pm (3\% + 0.1 \Omega)$ F: $\Delta R \le \pm (1\% + 0.05 \Omega)$	IEC 60115-1/JIS C 5201-1, Clause 4.25. Permanent resistance change after 1000(-0~+48) hours (1.5 hours ON, 0.5 hour OFF) at RCWV or Max. Keep the resistor at $70\pm2^\circ\!$
Temperature Cycle	J: Δ R \leq \pm (1%+0.1 Ω) F: Δ R \leq \pm (0.5%+0.05 Ω) No mechanical damage.	IEC 60115-1/JIS C 5201-1, Clause 4.19. Repeat 5 cycles as follows -55℃(30 Min.), 25℃(2-3Min.), +155℃(30Min.).
Insulation Between termination and coating must be over 1000M $Ω$.		IEC 60115-1/JIS C 5201-1, Clause 4.6. Test voltage: 100 ± 15V.
		IEC 60115-1/JIS C 5201-1, Clause 4.33. Resistance change after bended on the 90mm PCB. Bend: 3mm for 0603, 0805. 2mm for 1206.

Single Layer Chip Ceramic Capacitor

Single Layer Chip Ceramic Capacitor(SLC)

General SLC	Margin SLC	Surface Mounting SLC	Array SLC	Multi-PAD SLC
SG	SM	SS	SA	SP
Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF	Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF	high precision single layer series capacitor	an array consisting of multiple single-layer capacitors, suitable for multiple coupling and bypassing	multiple capacitance value, binary tunable single layer capacitor, suited for tuning design or microwave integrated circuit

Meet Standard: MIL-PRF-49464C

♦Inspection Item

Group	Item	Test Method	Test Condition
A1	Burn	-	-
A1	Capacitance	-	100%
A1	Dissipation factor(D.F.)	-	100%
A1	IR	-	100%
A1	DWV	-	100%
А3	Visual	Method 2032 of MIL-STD-883	-
B1	Bond strength	Method 2011 of MIL-STD-883	D, 5 grams minimum with .001" dia wire
B1	Die shear strength	Method 2019 of MIL-STD-883	Limit per MIL-STD-883, Figure 2019-4
B2	Temperature coefficient	-	-
C1	Immersion	Method 107,104 of MIL-STD-202	Immersion: B
C2	Resistance to solder heat	Method 210 of MIL-STD-202	310° C for 5 seconds
C3	Humidity, steady state, low voltage	Method 103 of MIL-STD-202	Condition A
C4	Life	Method 108 of MIL-STD-202	Applied 200% rated voltage, 2000 hours

Single Layer Chip Ceramic Capacitor

♦Product Applications

DC blocking, RF bypass, filtering, decoupling, microwave integrated circuit

♦Product Features

Reliable performance Small size, down to 10mil*10mil Microwave and millimeter wave, frequency up to 100GHz

Suited for conductive adhesive, AuSn eutectic soldering, gold wire bonding

♦Part Number

SG	1010	K301	T	1R0	В	1	G
T	$\overline{\top}$	$\overline{}$	T	T	T	T	T
1	2	3	4	(5)	6	7	8
SLC	Size	Dielectric Coefficient	Metallization	Capacitance	Tolerance	Rated Voltage	Packaging

①SLC Series Capacitors

General SLC	Margin SLC	Surface Mounting SLC
SG	SM	SS
Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF	Applications: RF, microwave and millimeter wave. Frequency: 100MHz ~100GHz, Capacitance: 0.1 ~ 10000pF	High precision single layer series capacitor

②Size

The first two digits represent length, the second two digits represent width, Unit: mil; for example: 1010, length is 10mil (0.254mm), width is10mil (0.254mm).

Single Layer Chip Ceramic Capacitor

3 Dielectric Coefficient

dielectric coefficient < 10, K9R6=9.6; dielectric coefficient ≥ 10, K301=300.

Dielectric type	Dielectric constant	Temperature Coefficient Code	Temperature Coefficient	Temperature Range	Max.D.F	IR(Ω) Min@25°C
	15	COG	0±30ppm	-55 ~ +125° C	0.15%@1MHz	1012
	35	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
Tuna I	85	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
Type I	220	S3L	-3300±500ppm	-55 ~ +125°C	0.25%@1MHz	1012
	300	R3L	-2200±500ppm	-55 ~ +125°C	0.7%@1MHz	1011
	600	S3L	-3300±500ppm	-55 ~ +125°C	1.2%@1MHz	1011
	900	T3M	-4700±500ppm	-55 ~ +125 ° C	1.2%@1MHz	1011
	1300	X7S	±22%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	1500	X7S	±22%	-55 ~ +125°C	4%@1kHz/1MHz	1011
Type II	2500	X7R	±15%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	4000	X7R	±15%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	9000	Y5V	-82% ~ +22%	-30 ~ +85°C	4%@1kHz/1MHz	1011
	15000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	1010
Type III	25000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	1010
1 ype III	35000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	1010
	45000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	10 ⁹

4 Metallization

		Sputter Layer	Pla	ting Layer
Code	Metal	Thickness	Metal	Thickness
М	TiW/Au	0.01 ~ 0.05/0.03 ~ 0.05	Au	≥2
Р	TiW/Ni/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2
Т	TaN/TiW/Au	0.03 ~ 0.10/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2
F	TaN/TiW/Ni/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2
Н	TaN/TiW/Pt/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2
D	TiW/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2
Е	Ti/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2
X	TiW/Ni/Ag	0.01 ~ 0.05/0.1 ~ 0.2/0.10 ~ 0.20	-	-
L	frontside: Ti/Pt/Au backside: Ti/Pt	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2

Note: please contact Dalicap for non-standard Au thickness and metallization system.

Single Layer Chip Ceramic Capacitor

⑤ Capacitance

Less than 10pF, 1R0=1.0pF; No less than 10pF, 101=100pF.

⑥ Tolerance

Code	А	В	С	D	F	G	J	K	М	0	Z	V
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%	±20%	±40%	-20% ~ +80%	0 ~ +100%

⑦ Rated Voltage

Code	Rated Voltage	Code	Rated Voltage
А	10	6	63
В	16	1	100
2	25	C	120
5	50		

Packaging Type

W: Waffle Packaging; G: Stick Box; R: Film Ring.

Dali

SG /SM Series SLC

♦ SG/SM Series Capacitance Table

Dimensi	on Code)10 x.254)			12 (.305:	12 k.305)				15 x.381)		2020 (.508x.508)			
Rated	voltage	16V	25V	50V	100V	16V	25V	50V	100V	16 V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																
0.1	А	K350	K350	K350	K350	K350	K350	K350	K350								
0.3	А	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350				
0.8	В	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850
1.0	В	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
2.2		K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
3.3		K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
4.7	С	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
6.8	D	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
8.2		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
10		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
15		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
18		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
20		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
22		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
33		K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
39		K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
47		K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
50		K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
68		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
82		K253	K253	K253	K253	K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
100		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902
120		K353	K353	K353		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902
150	J	K353	K353			K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153
180	K	K453				K353	K353	K353		K253	K253	K253		K153	K153	K153	K153
200	М	K453				K353	K353			K253	K253	K253		K153	K153	K153	K153
220						K453				K253	K253	K253		K153	K153	K153	
270						K453				K353	K353	K353		K153	K153	K153	
330										K353	K353			K253	K253	K253	
390										K453				K253	K253	K253	
470														K353	K353		
560														K353	K353		
680														K453			
820																	
1000																	
1200																	
2200																	
10000		_	_	Тур	e I Dielec	tric		Тур	e II Dielec	tric	_	Тур	e III Diele	ctric		_	

◆SG/SM	Series	Capacitance	Table
--------	--------	-------------	-------

	70	deries Capacitance Table											10.10								
	ension ode		25 (.635)				30 (.762)				35 (.889)	35 (.889)			40 (1.016)			5050 (1.270x1.270)			
Rated	voltage	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																				
0.1	Α																				
0.3	Α																				
0.8	В	K350	K350	K350	K350	K350	K350	K350	K350												
1.0	В	K850	K850	K850	K850	K350	K350	K350	K350	K350	K350	K350	K350								
2.2		K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350	K350	K350	K350	K350				
3.3		K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
4.7	С	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
6.8	D	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
8.2		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
10		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850
15		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
18		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
20		K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
22		K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
33		K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
39		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
47		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
50		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
68		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
82		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
100		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
120		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
150	J	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
180	K	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
200	М	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
220		K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
270		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
330		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
390		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
470		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
560		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
680		K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902
1000		K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153	K153
1200		K453				K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153	
1500						K453				K353	K353			K253	K253	K253		K153	K153	K153	
1800										K353	K353			K353	K353			K153	K153	K153	
2200				_	15.			_		K453		_		K353				K253	K253		
10000			colour		e I Diele			71	e II Diele			71	III Diele								

Note: 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant.

2) Special Capacitance and rated voltage, Please contact Dalicap.

Note: 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant.

²⁾ Special Capacitance and rated voltage, Please contact Dalicap.

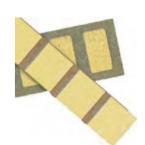
SS Series SLC

▲SS Series Canacitance Table

♦SS Series Capacitance Table																	
Dimensi	on Code		20 (.508)				40 (1.016	20 x.508)				30 x.762)				40 (.1.016)	
Rated v		16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																
0.1	Α	K850	K850	K850	K850	K350	K350	K350	K350								
0.3	Α	K301	K301	K301	K301	K350	K350	K350	K350	K350	K350	K350	K350				
0.8	В	K601	K601	K601	K601	K850	K850	K850	K850	K350	K350	K350	K350	K350	K350	K350	K350
1.0	В	K601	K601	K601	K601	K301	K301	K301	K301	K850	K850	K850	K850	K350	K350	K350	K350
2.2		K132	K132	K132	K132	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
3.3		K252	K252	K252	K252	K601	K601	K601	K601	K301	K301	K301	K301	K850	K850	K850	K850
4.7	С	K402	K402	K402	K402	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
6.8	D	K402	K402	K402	K402	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
8.2		K402	K402	K402	K402	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
10		K402	K402	K402	K402	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
15		K902	K902	K902	K902	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
18		K902	K902	K902	K902	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
20		K153	K153	K153	K153	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
22		K153	K153	K153	K153	K402	K402	K402	K402	K132	K132	K132	K132	K132	K132	K132	K132
33		K253	K253	K253		K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
39		K253	K253	K253		K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
47		K353	K353			K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
50		K353	K353			K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
68		K453				K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
82						K153	K153	K153	K153	K402	K402	K402	K402	K402	K402	K402	K402
100	-					K153	K153	K153	K153	K402	K402	K402	K402	K252	K252	K252	K252
120	J					K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
150	K					K253	K253	K253	K253	K902	K902	K902	K902	K402	K402	K402	K402
180	М					K253	K253	K253	K253	K153	K153	K153	K153	K902	K902	K902	K902
200	101					K353	K353	K353		K153	K153	K153	K153	K902	K902	K902	K902
220	-					K353	K353	K353		K153	K153	K153	K153	K902	K902	K902	K902
270	-					K453	K453			K153	K153	K153	K153	K153	K153	K153	K153
330						K453				K253	K253	K253	K253	K153	K153	K153	K153
390										K253	K253	K253		K153	K153	K153	K153
470										K353	K353	K353		K153	K153	K153	K153
560										K353	K353			K253	K253	K253	K253
680										K453				K253	K253	K253	
820														K353	K353	K353	
1000														K353	K353		
1200														K453			
10000				Туре	e I Diele	ctric	1	Тур	e II Diele	ctric		Туре	e III Diele	ctric			

2) Special Capacitance and rated voltage, Please contact Dalicap.

SA Series Array SLC


SA Series Array SLC

◆Product Application

DC blocking, RF bypass, filtering, decoupling, microwave integrated circuit

♦Product Feature

Integrated design for saving space and simplied assembling The total size is theoretically minimum 20mils×10 mils

◆Part Number

SA	1010	K301	T	1R0	В	1	G	6
T	\top	\top	T	T	Τ	\top	\top	\top
1	2	3	4	(5)	6	7	8	9
Array SLC	Size	Dielectric Coefficient	Metallization	Capacitance	Tolerance	Rated Voltage	Packagiı	ng Capacitor Quantity

①SLC Series Capacitors

SA Series Array SLC

②Size

The first two digits represent length, the second two digits represent width, Unit: mil; for example: 1010, length is 10mil (0.254mm), width is10mil (0.254mm)

SA Series Array SLC

3 Dielectric Coefficient

dielectric coefficient < 10, K9R6=9.6; dielectric coefficient ≥ 10, K301=300.

Dielectric type	Dielectric constant	Temperature Coefficient Code	Temperature Coefficient	Temperature Range	Max.D.F	IR(Ω) Min@25°C
	15	COG	0±30ppm	-55 ~ +125° C	0.15%@1MHz	1012
	35	COG	0±30ppm	-55 ~ +125° C	0.15%@1MHz	1012
	85	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
Type I	220	S3L	-3300±500ppm	-55 ~ +125°C	0.25%@1MHz	1012
	300	R3L	-2200±500ppm	-55 ~ +125°C	0.7%@1MHz	1011
	600	S3L	-3300±500ppm	-55 ~ +125°C	1.2%@1MHz	1011
	900	T3M	-4700±500ppm	-55 ~ +125°C	1.2%@1MHz	1011
	1300	X7S	±22%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	1500	X7S	±22%	-55 ~ +125°C	4%@1kHz/1MHz	1011
Type II	2500	X7R	±15%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	4000	X7R	±15%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	9000	Y5V	-82% ~ +22%	-30 ~ +85 ° C	4%@1kHz/1MHz	1011
	15000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	10 ¹⁰
Typo III	25000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	10 ¹⁰
Type [[[35000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	10 ¹⁰
	45000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	10 ⁹

4 Metallization

		Plating Layer			
Code	Metal	Thickness	Metal	Thickness	
М	TiW/Au	0.01 ~ 0.05/0.03 ~ 0.05	Au	≥2	
Р	TiW/Ni/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2	
Т	TaN/TiW/Au	0.03 ~ 0.10/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2	
F	TaN/TiW/Ni/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2	
Н	TaN/TiW/Pt/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2	
D	TiW/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2	
Е	Ti/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2	
X	TiW/Ni/Ag	0.01 ~ 0.05/0.1 ~ 0.2/0.10 ~ 0.20	-	-	
L	frontside: Ti/Pt/Au backside: Ti/Pt	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2	

Note: please contact Dalicp for non-standard Au thickness and metallization system.

SA Series Array SLC

⑤ Capacitance

Less than 10pF, 1R0=1.0pF; No less than 10pF, 101=100pF.

© Tolerance

Code	А	В	С	D	F	G	J	K	М	0	Z	V
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%	±20%	±40%	-20% ∼ +80%	0 ~ +100%

⑦ Rated Voltage

Code	Rated Voltage	Code	Rated Voltage
А	10	6	63
В	16	1	100
2	25	С	120
5	50		

Packaging Type

W: Waffle Packaging; G: Stick Box; R: Film Ring.

Capacitor quantity

♦SA Series Array SLC

Dimensi	on Code		10 (.254)				1212 (.305x.305)					15 x.381)			20(.508	20 x.508)		2525 (.635x.635)			
Rated v	oltage	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																				
0.1	Α	K350	K350	K350	K350	K350	K350	K350	K350												
0.3	А	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350								
0.8	В	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
1.0	В	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850
2.2		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850
3.3		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
4.7	С	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
6.8	D	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601
8.2		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
10		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
15		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132
18		K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
20		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
22		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
33		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252
39		K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
47		K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
50		K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402
68		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
82		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
100		K153	K153	K153		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
120		K153	K153	K153		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
150	J	K253	K253	K253		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902
180	К	K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153	K153	K153	K153	K153	K153
200	М	K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153
220		K353	K353			K353	K353			K253	K253	K253		K153	K153	K153		K153	K153	K153	K153
270		K453				K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153	
330						K453				K353	K353			K253	K253	K253		K253	K253	K253	
390										K453				K353	K353	K353		K253	K253	K253	
470										K453				K353	K353			K253	K253	K253	
560														K453				K353	K353		
680																		K453			
1000																					
1200																					
1500																					
1800																					
2200																					
10000				Тур	e Diele	ctric		Тур	e II Diele	ctric		Тур	e III Diele	ctric							

Note: 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant.

♦SA Series Array SLC

Dimensi	Dimension Code 3030 (.762x.762)					3535 (.889x.889)				40 (1.016)				50 (1.27))50 x1.27)		7070 (1.78x1.78)				
Rated v	vo l tage	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																				
0.1	А																				
0.3	А																				
0.8	В	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350				
1.0	В	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350
2.2		K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
3.3		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
4.7	С	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850
6.8	D	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
8.2		K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
10		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
15		K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
18		K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
20		K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601
22		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
33		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132
39		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132
47		K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
50		K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
68		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
82		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252
100		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
120		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
150	J	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402
180	K	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
200	М	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
220		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
270		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
330		K153	K153	K153		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
390		K253	K253	K253		K153	K153	K153		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902
470		K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153		K153	K153	K153	K153
560		K253	K253	K253		K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153	
680		K353	K353			K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153	
1000		K453				K453				K353	K353			K353	K353	K353		K253	K253	K253	
1200										K453				K353	K353			K253	K253	K253	
1500														K453				K353	K353		
1800																		K453			
2200																					
10000				Тур	e I Diele	ctric		Тур	e II Diele	ctric		Тур	e III Diele	ctric							

Note: 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant.

²⁾ Special Capacitance and rated voltage, Please contact Dalicap.

²⁾ Special Capacitance and rated voltage, Please contact Dalicap.

SP Series Multi-Pad SLC

SP Series Multi-Pad SLC

◆Product Applications

Matching networks, parallel resonance circuits, dielectric resonator tuning & coupling.

♦Product Features

Small geometric size is suitable for microwave circuit and is good for circuit design and adjustment SP Array SLC is mainly customized according to customer drawings and requirements;

Maximum overall size:10×10mm;

Minimum overall size:0.3×0.3mm;

Minimum machining gap: 50μ m,

Thickness: $0.15 \sim 0.25$ mm.

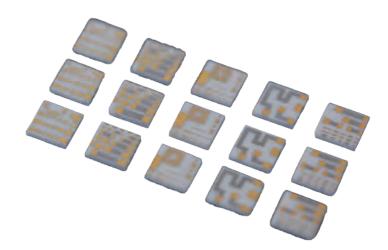
♦Part Number

SP	1010	K301	Τ	1R0	В	1	G	6
丁	$\overline{}$	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ
1	(2)	3	4	(5)	6	7	8	9
Multi- PAD SLC	Size	Dielectric Coefficient	Metallization	Capacitance	Tolerance	Rated Voltage	Packaging	Capacitor Quantity

Thin Film Circuit

Thin Film Circuit

◆Product Features


- 1. Sputtering technology, high reliability and ultra-stable performance, good consistency.
- 2.Designed and processed with 99.6% pure Al2O3 substrate, which has excellent insulation performance and low loss at high frequency.
- 3. Designed and processed with high-purity AIN substrate, which has excellent thermal conductivity.

♦Product Applications

Substrates for microwave/millimeter wave application, microwave/millimeter wave device, and high-speed optical communication device.

♦ Process Introduction

On the ceramic substrate, through magnetron sputtering, photoetching, dry wet etching, electroplating gold and other processes, the thin film components and metal lines are integrated to form high-precision circuit patterns with specific functions.

♦ Material Properties

Material	Chemical Composition	Purity	Color	Nominal Density (g/cm3)	Loss (1 MHz)	Dielectric Constant (1 MHz)	Thermal Conductivity (W/m°K)	CTE (10-6mm/° C)
Aluminum Oxide	Al_2O_3	96%	White	3.7	0.0003	9.5±0.2	24.7	6.5~8.0 (25°C~800°C)
Aluminum Oxide (Polished)	Al_2O_3	99.6%	White	3.87	0.0001	9.9±0.1	26.9	7.0~8.3 (25° c ~1000° c)
Aluminum Oxide (As-fired)	AI_2O_3	99.6%	White	3.87	0.0001	9.9±0.1	26.9	7.0~8.3 (25° C ~1000° C)
Aluminum Nitride (Polished)	AIN	98%	Gray	3.28	0.001	8.8±0.2	170	4.6 (25°C~300°C)
Aluminum Nitride (As-fired)	AIN	98%	Gray	3.28	0.001	8.8±0.2	170	4.6 (25℃~300℃)

Thin Film Circuit

Design Guidelines

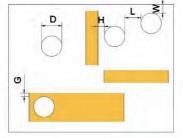
Substrate Materials

- 1. Material: alumina oxide, aluminum nitride, silicon, glass, etc.
- 2. Layout: $2 \sim 6$ inches square or round (Typical: 2 inches square)
- 3. Thickness: $0.101 \sim 1.524 \text{ mm}$ (Typical: 0.254, 0.381)
- 4.Roughness: polished(<0.08µm), as-fired(<0.2µm), lapped (customer specified)

Metal

- 1. Sputtering: Ti、TiW、TaN、Cu、Ni、Pt、Au
- 2. Electroplating: Au
- 3. Au thickness: $0.5 \sim 5 \mu m$

• TaN Sheet Resistance

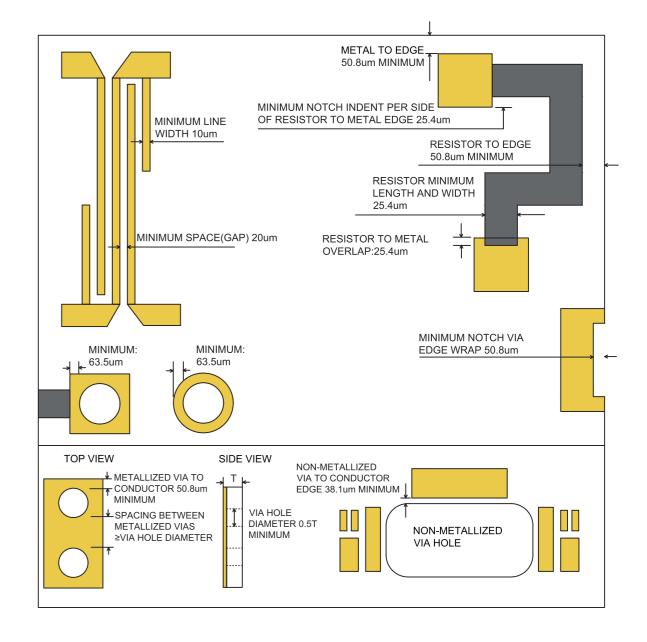

- 1. Sheet resistance: $25 \sim 200\Omega/\Box$ (Typical: $50\Omega/\Box$)
- 2. Resistance tolerance: $\pm 10\%$ (Typical: $\pm 20\%$)
- 3. Minimum resistor size: 50µm*50µm
- 4. Resistance TCR: -100 ± 50 ppm/°C @ -55°C $\sim +125$ °C
- 5. Maximum service temperature: 350°C (<0.5 hours)

Graphic

- 1. Minimum line width: 10µm
- 2. Minimum line gap: 20µm
- 3. Line tolerance: $\pm 3\mu m$ (for non-critical areas $\pm 5\mu m$)

Metallized holes/slots

- 1. Hole diameter D: 0.5*T minimum
- 2. Spacing between via holes L: 1*T minimum
- 3. Hole to edge W: 1*T minimum
- 4. Hole to metal line H: 38.1µm minimum
- 5. Via hole to conductor edge G: 50.8µ minimum


Dimensions

- 1. Minimum size: 0.3mm*0.3mm
- 2. Tolerance: ± 0.05 mm

Drawing

- 1. Format: DXF, DWG
- 2. Length unit: mm

Detailed Design Guidelines

